RT-129: Advanced Technical Leadership

17 July 2015

Principal Investigator:
Dr. Michael Pennotti, Stevens Institute of Technology

Research Team:
Dr. Peter Dominick
Prof. William Robinson

Period of Performance: September 26, 2014 to June 30, 2015
ABSTRACT

This report summarizes the research findings, conclusions, and recommendations for SERC Research Task 129, which facilitated the transition of SYS 350A Systems Lens curriculum content and structure for future use by the DAU in training Department of Defense (DoD) systems engineers (SE) and technical leaders at senior and executive levels. The curriculum had previously been developed, tested, refined and validated under SERC Research Task 4 through an instructor pilot at DAU Ft. Belvoir during FY 11 and two student pilots, conducted at Aberdeen Proving Grounds during FY 11 and DAU South in Huntsville, AL during FY 12.
TABLE OF CONTENTS

Abstract .. ii

Table of Contents .. iii

Figures and Tables ... iv

1 Executive Summary .. 1

2 Background ... 1
 2.1 RT4 Overview, Findings, & Conclusions Related to SYS 350A ... 1

3 350A Transition .. 5
 3.1 SYS 350A Refinement ... 5
 3.2 January 2015 SERC-Led Pilot .. 6
 3.4 DAU Refinement .. 7
 3.5 May 2015 DAU-Led Pilot ... 10

4 Findings, Conclusions & Recommendations .. 11
Figures and Tables

Figure 2.10: SYS 350A Triangle Architecture ... 4
Figure 2.11: SYS 350A Syllabus ... 4
Figure 3.10: Syllabus for the January 2015 SYS 350A Pilot .. 6
Table 3.40: SYS 350A May 2015 Syllabus ... 10
1 EXECUTIVE SUMMARY

The purpose of Systems Engineering Research Center (SERC) Research Task 129 (RT-129) Advanced Technical Leadership was to transition curriculum content for SYS 350A Systems Lens to DAU for their use in preparing systems engineers and technical leaders in the DoD acquisition community to assume key leadership positions in the future. The SYS 350A material had previously been developed, tested, refined and validated under SERC Research Task 4 (RT-4) Technical Leadership Development Program. The 350A approach and its associated course material were recommended for transition and accepted by DAU at the end of FY 12 based on feedback from DoD acquisition professionals and DAU faculty who participated in one of three SYS 350A pilots conducted during FY 11 and 12. Two additional SYS 350 courses, SYS 350B Business Lens and SYS 350C Enterprise Lens, were also validated under RT-4 and recommended for transition at the end of FY 13. These two courses are being transitioned under a separate SERC Research Task, RT-140 Technical Leadership.

The transition process occurred in four steps. First, a third student pilot of SYS 350A was delivered at DAU Ft. Belvoir from January 16-19, 2015 using the same SERC instructors (faculty from Stevens Institute of Technology) and the same course material as that validated during the FY 12 pilots. Participants in the January pilot included 23 senior acquisition leaders from all four services and the Missile Defense Agency, and six DAU instructors who had been identified as candidates to deliver the course going forward. Next, the DAU instructors reformatted the course material to comply with DAU standards, refined it to incorporate lessons learned from the January pilot and adapted it to match their own instructional style. The DAU instructor team then delivered a fourth student pilot at DAU South in Huntsville, AL from May 4-8, 2015. Finally, at a joint meeting between the SERC team and the DAU team was conducted on June 24, 2015 at DAU Ft. Belvoir, the DAU and Stevens teams worked to consolidate lessons learned from the May pilot and to assess the success of the task.

2 BACKGROUND

The overall approach and course material for SYS 350A, which was to be transitioned to the DoD under RT-129 was developed and validated under RT-4.\(^1\) The research hypothesis for RT-4 was that “the technical leadership capabilities of high potential, senior DoD systems engineers and technologists can be accelerated through an educational program in technical leadership.” That hypothesis was confirmed for the first of three courses, SYS 350A The Systems Lens, during FY 12. The research hypothesis for RT-129 was that “the SYS 350A approach and course material, developed and validated under RT-4, could successfully transitioned to DoD instructors for their own use going forward.” That hypothesis was confirmed by the present task. The process of developing, testing, refining and validating the SYS 350A approach and course material is briefly summarized in this section.

2.1 RT4 OVERVIEW, FINDINGS, & CONCLUSIONS RELATED TO SYS 350A

RT-4 Year 1: In FY09, DAU contracted with the Systems Engineering Research Center (SERC) to evaluate the hypothesis that the technical leadership capabilities of high potential, senior DoD systems engineers

and technologists could be accelerated through an educational program in technical leadership. The research task, designated as RT-4 (Systems Engineering Technical Leadership) included research of state-of-the-art and best practices associated with technical leadership education and then, along with the industrial, academic, and government leadership experience of SERC collaborators, development of a technical leadership program as a capstone element to DAU engineering courses. The hypothesis would then be evaluated through a series of pilot courses attended by Defense Acquisition University (DAU) faculty and DoD systems engineering professionals.

The RT-4 research team collected data from government, industry, and academia and developed technical leadership curriculum architecture to frame the ensuing pilot course research and development. The architecture views technical leadership through three apertures or lenses that represent the expanding responsibilities of an engineering leader, from developing systems as a project technical lead (Systems Lens), to the programmatic challenges of an IPT lead (Business Lens), to the responsibilities of a technical executive (Enterprise Lens). These three nested lenses framed the subsequent curriculum research. The RT-4 SE technical leadership course architecture was designated SYS 350 by the DAU, who further established that the SYS 350 course would comprise a series of three 5-day modules designated SYS 350A (Systems Lens), SYS 350B (Business Lens), and SYS 350C (Enterprise Lens).

Using the SYS 350 architecture, learning objectives, desired outcomes, and focus areas were identified for each of the three modules and the focus areas were populated with a draft list of topics. Available courseware was compared to the topical outline for each lens to identify areas where materials existed that could be tailored to support the DAU TLP model.

RT-4 Year 2: In the second year of the task, the RT-4 team produced a roadmap for developing, delivering, and refining course materials for the SYS 350A Systems lens. Additional research delivered a set of working definitions for technical leadership and a framework for discussing how leadership actions in a technical environment might differ from and also align with successful leadership practices in other disciplines. These research findings were presented to the DAU, refined, and leveraged to provide additional bases for the ensuing SYS 350 development work.

The SERC team continued a review of Year 1 SYS 350 architecture, validated that the three-lens approach remained an appropriate framework for development, and refined the architecture to include updated focus areas for each lens. Using the evolved SYS 350 architecture, the team then developed a series of course descriptions to outline the goals, objectives, and key activities of each of the lenses.

The architecture framework and SYS 350A focus areas were then used to identify key SYS 350A syllabus segments, and then to develop Storyboards to support design reviews of the planned SYS 350A segments. The SYS 350A storyboards were reviewed during a DAU-SERC red team in August 2011 and this established the design baseline for a SYS 350A instructor pilot. The first SYS 350A instructor pilot was then conducted with sponsors from DASD(SE) and faculty/researchers from DAU Learning Capabilities Integration Center, DAU Capital and Northeast Region, DAU Mid-West Region, DAU South Region, DAU Mid-Atlantic Region, and Defense Systems Management College from 26-30 September 2011. Based on SYS 350A instructor pilot feedback, the course syllabus, teaching materials, and technical leadership learning emphasis were iterated, resulting in a SYS 350A student pilot version in preparation for the first student SYS 350A pilot. The student pilot, attended by US Army engineering professionals from Research, Development and Engineering Command, Tank Automotive Research, Development and Engineering Center, Edgewood Chemical Biological Center, Aviation Missile Research, Development and
Engineering Center, Army Power, and the Chemical Material Agency, was conducted from 14-18 November 2011 at the US Army Aberdeen Proving Grounds, MD. At the conclusion of RT-4 Year 2, the SERC provided an initial approach, architecture, and materials for SYS350B to DAU on 12 December 2011.

RT-4 Year 3: During Year 3, the SERC conducted an additional SYS 350A Systems Lens student pilot at DAU South, Huntsville, AL and provided findings, conclusions, and recommendations resulting from the Year 3 work.

RT-4 Years 1–3 research results are documented in four SERC Technical Leadership Development Program, Technical Reports SERC TR-013—1 through TR 013-4.

At the end of Year 3 (2013), the final recommendations were:

- **Student Course Expectations and Cohort Size:** Student selection, learning expectations, and the syllabus should be prescribed and agreed to by the sponsoring organizations. It is additionally recommended that consideration be given to requiring candidate students submit their desired expectations and professional reasons for attendance as part of their selection process to better frame expectations. The recommended student cohort size should range from twenty to twenty-five.

- **Course Development Approach:** The use of objectives or focus areas approaches for first time course prototyping should be pursued to ensure initial alignment with the desired course objectives and to identify strengths, weaknesses, and opportunities through cohort test. The seminar or plenary approach, with its inherent robustness to changing course materials, delivery modalities, and guest speaker accommodation should be used for course refinement and sustainment.

- **Technical-Behavioral Course Content Ratio and Integration:** Technical Leadership education is, on balance, a behavioral educational experience for those students with demonstrated technical expertise and high potential for increased organizational responsibilities. A 30% Leadership Thread-Technical course content ratio is a recommended starting point for future technical leadership course development or updates.

- **Group Project:** Simulation vs. Strategy Development: It is recommended that leadership simulations requiring decision and illustrating consequence be the preferred group project approach for all three SYS 350 modules.

- **Transition Recommendations:** SYS 350A, with minor changes to its current form, is recommended for transition to the DAU portfolio of systems engineering courses. Figure 2.10, termed the SYS 350A Triangle Architecture, graphically illustrates the overall 350A course objective at the top of the triangle supported by the technical focus areas (black circles) and the leadership focus areas or threads (red circles).
Figure 2.10: SYS 350A Triangle Architecture

Figure 2.11 below illustrates the final SYS 350A syllabus developed under RT-4.

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Project: Acquisition Simulation</td>
<td>Welcome</td>
<td>Welcome</td>
</tr>
<tr>
<td>Welcome</td>
<td>Thread: Being a Self-Aware Leader</td>
<td>Case Study: Modern Development Methods</td>
</tr>
<tr>
<td>SYS 350 Overview</td>
<td>Lecture: Applied Systems Thinking</td>
<td>Lecture: How Much is Good Enough</td>
</tr>
<tr>
<td>Introductions, Orientation, & Expectations</td>
<td>Case Study: DHS Container Security</td>
<td>Thread: Your Core Values</td>
</tr>
<tr>
<td>SYS 350A Systems Lens Overview</td>
<td>Thread: Leading Others in Creative Problem Solving</td>
<td>Case Study: Why Projects Fail</td>
</tr>
<tr>
<td>Case Study: Technical Uncertainty</td>
<td>Project: AR2D2: RFI</td>
<td>Project: AR2D2: RFP</td>
</tr>
<tr>
<td>SYS 350A Thread Overview</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td>Day 5</td>
<td></td>
</tr>
<tr>
<td>Case Study: Process Automation</td>
<td>Project: Leadership Recommendations</td>
<td></td>
</tr>
<tr>
<td>Lecture: Complexity</td>
<td>Project: Final Presentations</td>
<td></td>
</tr>
<tr>
<td>Thread: Your Plans for Developing as a Technical Leader</td>
<td>Feedback and Close</td>
<td></td>
</tr>
<tr>
<td>Case Study: Project-Program Complexity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project: AR2D2: IPT Competition</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.11: SYS 350A Syllabus

In summary, the RT-4 Years 1–3 validated the overall approach of the three-lens architecture to technical leadership education and established that both the content and the pedagogy of SYS 350A met the criteria for transitioning the Systems Lens course to the DAU. Given that SYS 350A was deemed ready for transition and the end of Year 3, RT-4 research during Year 4 focused exclusively on refining the curriculum for SYS 350B and 350C and preparing those courses for subsequent transition. That transition is being undertaken under a separate research task, RT-140.
3 350A TRANSITION

The SYS 350A transition was designed to take place over the first six months of 2015. Since it had been more than two years since the course had last been delivered, the first step was for the SERC team to refresh the course material during 4Q 2014 and prepare it for delivery. Then a third student pilot of the course was conducted in January 2015 at DAU Ft. Belvoir, with SERC instructors in the lead, and the DAU instructors targeted for subsequent delivery participating. Following that pilot, DAU took ownership of the course material, modified it to conform to DAU standards and tailored it to incorporate lessons learned during the SERC-led pilot. Finally, a fourth student pilot was conducted at DAU South in Huntsville, AL, this time with the DAU instructors in the lead. Each of the four stages is described in more detail below.

3.1 SYS 350A REFINEMENT

Since the SYS 350A course had been validated and recommended for transition under RT-4, the intent was to deliver the January pilot as much as possible exactly as had been done during the first two student pilots in 2012. The same Stevens instructors, (Dr. Michael Pennotti, Principle Investigator, and Dr. Peter Dominick and Prof. William Robinson, members of the Research Team) delivered the January pilot using the course material from the previous student pilots. The only modifications were few minor schedule adjustments were made to accommodate the needs of the instructors. The syllabus for the January 2015 pilot is provided in Figure 3.10 below.
<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Study: DHS Container Security</td>
<td>Case Study: Why Projects Fail</td>
<td>Leadership Thread: Leading Other is Creative Problem Solving</td>
<td>Case Study: Project/Program Complexity</td>
<td>Feedback & Close</td>
</tr>
<tr>
<td>Welcome and Introductions</td>
<td>Leadership Thread: Leading Other is Creative Problem Solving</td>
<td>Group Project: “Which Solution Do We Want and Why?”</td>
<td>Group Project: “Now Which Solution Do We Want and Why?”</td>
<td>The AR2D2 Group Project</td>
</tr>
<tr>
<td>Technical Leadership and Systems Lens Overview</td>
<td>Group Project: “What Are We Going to Ask For and Why?”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leadership Threads</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The AR2D2 Group Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.10: Syllabus for the January 2015 SYS 350A Pilot

3.2 January 2015 SERC-Led Pilot

The third student pilot was conducted at DAU Ft. Belvoir from January 12-16, 2015 with 29 students: 5 from the Army, 7 from the Navy, 3 from the Air Force, 2 from the Marine Corps, 5 from the Missile Defense Agency, 1 from OSD and 6 from DAU, 3 of whom were designated to teach the course during the subsequent DAU-led pilot in May.

The course was well received by the students. While no numerical feedback was obtained, student comments were collected at both the team and the individual level. In general, students liked the leadership thread material and wanted more of it. Similar comments had been received from students in earlier pilots. To some extent, this reflects the difficulty of covering a subject like leadership in what amounted to four days of class time, a challenge that is at least partly addressed by the progression...
from personal leadership, to leading teams, to leading change that is built into the SYS 350 A/B/C program.

Perhaps the most outstanding reflection of how well the January pilot was received by the participants is this endorsement from a senior leader recommending the May pilot to members of his team, a copy of which was provided to SERC by DAU:

“I participated in a beta-version of the course this past January in Belvoir. I highly recommend it for the target audience...GS-13s, even GS-14s, we want to continue to groom for greater technical leadership roles.

“DAU has done a great job putting "technical leadership" in context with leadership in general, highlighting the critical roles our technical community plays across the enterprise. It’s not just about SPOs, but broader to include S&T, Test...basically everywhere we have people who need to be led and inspired and work that needs to be managed with some degree of systems engineering rigor.

“And it’s not just about leadership. DAU weaves in important modules on Systems-Thinking and Systems-Complexity (my personal favorite), both critical subjects for our technical community to “wrap our heads around” given our enormously complex portfolio of systems and research.

“DAU has also developed some course content on the subject of ‘Agile Development Methods’...and it's not just about software. I'm sure you can all resonate with this given our insatiable appetite for some capability ‘yesterday.’

“How would you like to participate in discussions with seasoned experts on the subject ‘Why Projects Fail?’ I would...in fact I think I might be an expert in that area (if mere involvement in failed projects is a criteria...haha). DAU has a module on this subject as well.

“Enough shameless advertising for DAU. I highly recommend their course for our up-and-comers. It's a great exposure to the broader technical community...and, it's free."

“Please consider releasing one of your best to attend.”

3.4 DAU Refinement

Following transfer of the course material to the Government at the conclusion of the January pilot, the DAU instructors reformatted it to comply with their standards. This had not been done for the earlier pilots since they had been designed as proof of concept experiments. Transitioning the material was no small matter, requiring that learning outcomes be edited to explicitly conform to Bloom’s taxonomy, courseware be converted to DAU templates and formats, and a formal assessment strategy be implemented.

In addition, the DAU instructors made a number of modifications to the courseware to incorporate lessons learned from the January pilot and to adopt it to their own teaching styles and experience. An example was having students interview a partner during the opening exercise using the questions “why did your boss send you here” and “what do you hope to get out of the course.” Another was providing
students with a rubric to self-assess their participation in the course rather than having them assessed by an instructor. Both of these changes were intended to reinforce that, as leaders, students are responsible for their own learning, and to send the message that “this was not a traditional DAU course, this was different.” The syllabus for the May pilot is provided in Table 3.40.

<table>
<thead>
<tr>
<th>LESSON TITLE/TOPIC</th>
<th>LESSON TYPE</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY 1 - MONDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction and Course Themes</td>
<td>N/A</td>
<td>Overall course objectives were provided</td>
</tr>
</tbody>
</table>
| Leadership Concepts | Personal Leadership; Self-Awareness | • Analyze your own personal leadership capabilities
• Identify personal leadership strengths and opportunities |
| **DAY 2 - TUESDAY** | | |
| Being a Self-Aware Leader | Self-Awareness | Determine how “self-awareness” impacts your ability to succeed as a technical leader. |
| Your Core Values | Personal Leadership | • Determine both the terminal and instrumental values most important to you as a technical leader.
• Considering your personal values and organization, determine which skills are your strengths and which need further development |
| Your Operating Philosophy and Values Framework | Personal Leadership | • Assess how your values are reflected in your operating philosophy.
• Determine which skills in the competing values framework are most applicable in the organization in which you are a technical leader.
• Considering your personal values and organization, determine which skills are your strengths and which need further development |
| Change | Personal Leadership | Determine how your attitudes toward change impact your ability to succeed as a technical leader.
• Asses your tolerance for ambiguity.
• Asses your locus of control.
• Asses your goal orientation |
| Applied Systems Thinking (Diagramming Complexity) | Systems Thinking | Evaluate complex systems diagrams to identify the issues that need to be overcome. |
DAY 3 - WEDNESDAY

| Case Study: DHS Container Security Detection Project | Technical Acumen | Reflect on the complexity, ambiguity and uncertainty of contemporary development and technical leadership challenges |
| Leading Others in Creative Problem Solving | Personal Leadership | Share examples where you have contributed in a climate of balanced Advocacy and Inquiry. |
| Decision Biases in Creative Problem-Solving | Personal Leadership | • Identify decision biases that you have observed or have experienced.
• Determine if/how decision bias has impacted your creative performance |
| Buzzwords | Technical Acumen | Determine how management approaches can be applied to your organization and job.
• Analyze management approaches for applicability to your job.
• Describe how management approaches can be appropriately applied in your organization and to your job. |
| Why Projects Fail | Systems Thinking; Technical Acumen | Determine the root causes and effects for project and system success.
• Organize success factors into logical categories to facilitate root cause analysis assessment.
• Determine the root causes for project and system success.
• Explain why and how identified root causes led to project or systems success.
• Identify actions that can be applied to improve future project and system results. |

DAY 4 - THURSDAY

| When “Good” Wasn’t Good Enough | Personal Leadership | • Share examples and situations where “better was the enemy of good.”
• Share examples and situations where “good” wasn’t good enough. |
| Complexity | Systems Thinking; Technical Acumen | Provide examples (based on personal experience) of systems that demonstrate complex behavior and the challenges they pose.
• Explain challenges produced by complex systems.
• Recommend leadership approaches to address challenges of complex systems. |
| Project/Program Complexity – | Personal Leadership; | Identify issues which make projects and |
Case Study: Alaska Pipeline Technical Acumen

programs complex.
• Identify Key Areas that create complexity in a project or program
• Identify approaches that can be used by leadership to minimize complexity.

Developing Your Plan to Grow as a Technical Leader Personal Leadership; Self-Awareness

• Evaluate your technical leadership mindset to determine: what you value about your workplace; how you can drive change in your organization; and, the experiences you would like to have and the feedback you would like to receive on the job.
• Create detailed personal development objectives and plan.
• Determine which actions you will take in the short-term (next 10-14 days) to enhance your technical leadership capabilities.

DAY 5 - FRIDAY

Motivation Personal Leadership

Determine how your ability to motivate impacts your ability to succeed as a technical leader.
• Recognize your strengths and weaknesses.
• Explain how you motivate yourself and others.

Implementing Your Plan for Growth Personal Leadership; Self-Awareness

Feedback & Close

<table>
<thead>
<tr>
<th>Table 3.40: SYS 350A May 2015 Syllabus</th>
</tr>
</thead>
</table>

3.5 MAY 2015 DAU-LED PILOT

The fifth SYS 350A student pilot was conducted by the DAU team at DAU South in Huntsville, AL from May 4-8, 2015. The DAU team was led by David Swinney and included Brian Anderson and Scott Miller. Seventeen students participated, all from the Missile Defense Agency.

The course was very well received by the students. DAU noted that, on a 7-point Likert scale, their courses typically receive feedback scores of 6.7-6.8 for instructor quality, mid-5s for learning effectiveness and mid-4s for course relevance. For the SYS 350A pilot, student feedback scores in these three categories averaged 6.8, 6.9 and 6.5, respectively. In addition, based primarily on word of mouth recommendations, there are more than 60 potential DoD students on a waiting list to participate in future offerings of the course.

Beyond the student scores, the DAU instructors themselves enjoyed delivering the course and found it effective. They noted that it was not only different from a normal course for the students; it was different for them as well. Delivering the course requires that instructors set aside some of their skills at
leading student discussions and let the students drive the conversation. The instructors clearly found this enjoyable. One of them was heard to remark, “I would teach this course ten times a year if they would let me.” Clearly, the DAU instructors now “own” the course, which was a major goal of the research task.

4 FINDINGS, CONCLUSIONS & RECOMMENDATIONS

The objective of RT129, to transition SYS 350A The Systems Lens to DAU, was fully met. Specifically:

• Two additional SYS 350A student pilots were delivered and further validated the effectiveness of the leadership development approach and course material developed under SERC RT-4.
• The second of these pilots, delivered exclusively by DAU instructors, demonstrated the successful transition of the course approach and material from the SERC instructors, faculty from Stevens Institute of Technology, to the DoD.
• Based primarily on word of mouth, there are more than 60 acquisition community professionals who have expressed an interest in participating in future offerings of the course.
• The success of this task provides support for the planned transition of the other two SYS 350 courses, SYS 350B The Business Lens and SYS 350C The Enterprise Lens, which are being separately transitioned under RT-140.
• Going forward, SYS 350A can be expected to contribute to the development of future technical leaders within the DoD acquisition community, resulting in significant benefits to the acquisition professional they will lead.
• RT-129 has produced a valuable component for inclusion in the broader leadership development continuum for technical acquisition professionals that DoD intends to build to address the requirements of Better Buying Power 3.0.