RT16 Experience Accelerator
Progress and Future Plans

SERC Sponsor Research Review

February 25, 2014

www.sercuarc.org
Outline

• EA Overview
• Year end results
• Future work
• Demo
Overview
Hypothesis & Goals

Hypothesis: By using technology we can create a simulation that will put the learner in an experiential, emotional state and effectively compress time and greatly accelerate the learning of a systems engineer faster than would occur naturally on the job.

Goals: To build insights and “wisdom” and hone decision making skills by:
- Creating a “safe”, but realistic environment for decision making where decisions have programmatic and technical consequences
- Exposing the participants to job-relevant scenarios and problems
- Providing rapid feedback by accelerating time and experiencing the downstream consequences of the decisions made
Maturity in Systems Engineering requires:

- Viewing a program through the entire lifecycle
- Seeing the relationships between elements of the system, and the system developing the system
- Encountering the challenges faced in a complex system development
- Being able to navigate through the “gray” zone
- Creating mental templates which can be applied to similar future situations
Learning Process

Concrete Experience
(Experiencing)

- Decision and Actions
- Feedback on performance
- Communication with team, and stakeholders
- Profile building
- Active Experimentation (Doing)
- Re-experiencing / testing of lessons learned
- Developmental objective setting
- Abstract Conceptualization (Theorizing)

Accelerated Development

Reflective Observation (Reflecting)
- After action reflection
- Synthesis of lessons learned

Profile building

Developmental objective setting

Communication with team, and stakeholders

Decision and Actions

Feedback on performance

Re-experiencing / testing of lessons learned
The Experience: A Day in the Life of a PSE

UAV System:
- S0 – System
- S1 – Airframe and Propulsion
- S2 – Command and Control
- S3 – Ground Support

UAV KPMs:
- Schedule
- Quality
- Range
- Cost

Phases:
- EA Introduction
 - Phase 0: New Employee Orientation
- Experience Introduction
 - Phase 1: New Assignment Orientation
- Experience Body
 - Phase 2: Pre-integration system development -> CDR
 - Phase 3: Integration -> FRR
 - Phase 4: System Field Test -> PRR
 - Phase 5: Limited Production and Deployment
 - Phase 6: Experience End
- Experience Conclusion
 - Phase 7: Reflection

Each session = 1 day
Experience Accelerator Team

Experience Design:
- Jon Wade, PI – Stevens
- Rich Turner, Stevens
- James Armstrong - Stevens
- Rick Abell – consultant
- John Griffin – consultant
- John McKeown – consultant

Evaluation:
- Bill Watson, CoPI – Purdue
- Pete Dominick – Stevens (H1 Y2)
- Dick Reilly – Stevens (H1 Y2)
- Dana Ruggiero – Purdue (Y2)

Technology & Tools:
- George Kamberov – Stevens
- Brent Cox – Stevens
- Hao Kang – Stevens (H2 Y3)
- Wang Yang – Stevens (Y2)
- Vinnie Simonetti – Stevens (H1 Y2)
- Yagiz Mungan – Purdue (H1 Y2)

Simulation:
- Doug Bodner – Georgia Tech
- Anqi Zou – Georgia Tech (Y3)
- Arya Irani – GTRI (Y3)
- Subbu Ramanathan – Georgia Tech (Y2)
- Pradeep Jawahar – Georgia Tech (H1 Y2)
- Kyle Crawford – Georgia Tech (H1 Y2)
Year End Results
Major Increment 2 Research Activities

• Pilot System Development:
 ― Refinement based on evaluation findings
 ― Architecture, Design, Technology and Tools for Flexibility & eventual Open Source

• Develop Multi-Learner Technology

• Pilot System Evaluation:
 ― Plan Update
 ― Learner Identification
 ― Prototype Evaluation

• Open Source Preparation and Deployment:
 ― Prototype Completion
 ― Migration, Open Source Hosting & Development, and Ticketing
 ― Tool Development
 ― Design Flow
 ― Documentation

• External Developers Engagement

• Final Report
Pilot System Development

• Experience Design
 — User interface and status visibility
 — Dialog enhancement
 — Instructor interaction in class environments

• Technology
 — Multi-learner Capabilities
 — Dialog system
 — Stability: replication of state, communication and network improvements

• Simulation
 — Execution engine & charting improvements
 — Simulation model enhancements
 — Simulation chart syntax supporting new features
 — New output charts

• Tools
 — Chatmapper translator and integration
 — System dynamics GUI model building tool
 — Simulator XML syntax for charts and code that generates charts
 — Templates for recommendation forms and emails
Dashboard Status

<table>
<thead>
<tr>
<th>KPPs and TPMs</th>
<th>Range</th>
<th>Drag Coeff.</th>
<th>Propul. Effcy.</th>
<th>APS Weight</th>
<th>CCS Weight</th>
<th>Total Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5315.49</td>
<td>2.58</td>
<td>1226.66</td>
<td>7371.14</td>
<td>2548.88</td>
<td>9920.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contract Performance EVM ($M)</th>
<th>Cur. Burn Rate</th>
<th>BAC (Phase2)</th>
<th>EAC (Phase2)</th>
<th>Difference</th>
<th>Result (End of Phase 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.59</td>
<td>195.00</td>
<td>232.57</td>
<td>37.57</td>
<td>Overrun 19%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sched(SV)</th>
<th>Sched(SPI ratio)</th>
<th>Budget(CV)</th>
<th>Budget(CPI ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>-9.52</td>
<td>0.95</td>
<td>-35.77</td>
</tr>
<tr>
<td>UAVenture (Prime)</td>
<td>0.02</td>
<td>1.00</td>
<td>-9.07</td>
</tr>
<tr>
<td>AirGo (Airframe and Propulsion)</td>
<td>-3.63</td>
<td>0.91</td>
<td>-12.54</td>
</tr>
<tr>
<td>FlyWire (Command and Control)</td>
<td>-5.83</td>
<td>0.94</td>
<td>-10.84</td>
</tr>
<tr>
<td>Terra Firma (Ground System, Launch/Retrieval)</td>
<td>0.00</td>
<td>1.00</td>
<td>-3.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CDR Requirements (% complete)</th>
<th>Test Reqts</th>
<th>Digital Data Files</th>
<th>SW Dsgn Dscs</th>
<th>Struct. Lds.</th>
<th>SS Dsgn&Ver</th>
<th>V&V of SIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>98%</td>
<td>88%</td>
<td>93%</td>
<td>92%</td>
<td>99%</td>
<td>99%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FlyWire SW Quality (# of Defects)</th>
<th>Outstanding</th>
<th>Detection Rate</th>
<th>Removal Rate</th>
<th>Projected Time To Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Defects</td>
<td>0</td>
<td>0.3 def/mon</td>
<td>0.3 def/mon</td>
<td>0.0 Months</td>
</tr>
<tr>
<td>Non-critical Defects</td>
<td>8</td>
<td>11.0 def/mon</td>
<td>11.0 def/mon</td>
<td>0.7 Months</td>
</tr>
</tbody>
</table>

- **Red** - beyond Threshold or > 15% worse than plan, **Yellow** - 10-15% worse than plan, **Green** - within 10% of plan

Change from last cycle: ⬇️better ➤same ➣worse

UAV Experience Status

- **New User Orientation**
- **New Experience Orientation**
- **Pre-Integration System Development**
- **System Integration**
- **System Field Test**
- **Limited Production and Development**
- **Experience End**
- **Reflection**

06:09 PM
1/2/1970
Recommendation Report Phase 2

This is a set of recommendations before the CDR.

Based on the program performance this past review period and the feedback that I have received, I have the following recommendations for the Airframe and Propulsion, and Command and Control Systems as noted in the table below to achieve a high level of confidence in the program:

Airframe and Propulsion Subsystem

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Current Target</th>
<th>Current Value</th>
<th>Recommendation</th>
<th>Schedule Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staffing Sr. Staff</td>
<td>60.0</td>
<td>60.5</td>
<td>Set new Sr. Staff Target</td>
<td>Low (L)</td>
</tr>
<tr>
<td>Staffing Jr. Staff</td>
<td>60.0</td>
<td>59.6</td>
<td>Set new Jr. Staff Target</td>
<td>Low (L)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capability</th>
<th>Alloc. / Target</th>
<th>Current Value</th>
<th>Recommendation</th>
<th>Capability Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Allocation (lbs)</td>
<td>7500.0</td>
<td>7184.7</td>
<td>Set new Weight Alloc.</td>
<td>Low (L)</td>
</tr>
<tr>
<td>Propulsion Efficiency (Specific Impulses/sec)</td>
<td>0.00</td>
<td>1223.8</td>
<td>Set new Propulsion Eff.</td>
<td>Low (L)</td>
</tr>
<tr>
<td>Aerodynamic Drag (Kn)</td>
<td>0.00</td>
<td>2.56</td>
<td>Set new Drag Target</td>
<td>Low (L)</td>
</tr>
</tbody>
</table>
Multi-Learner

Modes:
• Single Learner mode
• Single Learner with supervisor (PM & Mentor)
• Multiple Learner
• Multiple Learner with supervisor

Prototype multi-learner capabilities have been developed for the Experience Accelerator. The capabilities have been provided for multiple learners to create and join games asynchronously, share documents, communicate directly with one another, and make decisions that affect the outcome of the simulations.
Performance Characterization

![Diagram showing performance characterization with various methods and measurements.](image)
Instructor Interaction

Three specific ways of instructor interaction emerged:

- **Mentor** - This is the role that ended up being closest to the DAU traditional instructor role and was used in the pilot. It includes having the instructor watch over the student teams as they work. The instructor can provide guidance or answer questions, but is not directly involved in the scenario.

- **Passive Program Manager** - This is an extension of the Mentor role with an ability to accept or reject the recommendations by the team.

- **Active Program Manager** - This is the expected role for multi-player supported experiences. The instructor replaces the system NPC PM as an active player with the Program Manager’s role. It is up to the instructor to receive and respond to the recommendations of the teams. Tools are provided that allow the instructor to view all of the experiences of the members of the team, communicate via chat, and accept or reject the team’s recommendations.
<table>
<thead>
<tr>
<th>Current Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 16, 2012</td>
<td>Initial DAU Integration meeting</td>
</tr>
<tr>
<td>Mar 4, 2013</td>
<td>Logistics/Joint Competency Proposal meeting</td>
</tr>
<tr>
<td>Apr 15, 2013</td>
<td>EA Demo, DAU Integration meeting</td>
</tr>
<tr>
<td>Apr 23, 2013</td>
<td>DAU Integration meeting</td>
</tr>
<tr>
<td>May 5, 2013</td>
<td>DAU Integration meeting</td>
</tr>
<tr>
<td>Aug 13, 2013</td>
<td>DAU Instructor Familiarization meeting</td>
</tr>
<tr>
<td>Sep 4-5, 2013</td>
<td>DAU Instructor Pilot</td>
</tr>
<tr>
<td>Oct 15, 2013</td>
<td>DAU Pre-Student Pilot Review</td>
</tr>
<tr>
<td>Oct 29-30, 2013</td>
<td>DAU Student Pilot</td>
</tr>
<tr>
<td>Dec 31, 2013</td>
<td>Complete Final Report</td>
</tr>
</tbody>
</table>
SYS302 Deployment Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Instructors</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400-1430</td>
<td>Introduce Exercise</td>
<td>Team formation, role clarification/alignment</td>
</tr>
<tr>
<td>1430-1530</td>
<td>Mentor and Support</td>
<td>Individuals complete EA Phase 0 and Phase 1</td>
</tr>
<tr>
<td>1530-1630</td>
<td>EA PM/Mentor/Control</td>
<td>Team completes Phase 2A Cycle 1</td>
</tr>
<tr>
<td>1630-1700</td>
<td>EA PM/Mentor/Control</td>
<td>Team completes Phase 2A Cycle 2</td>
</tr>
<tr>
<td>Wednesday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0800-0830</td>
<td>EA PM/Mentor/Control</td>
<td>Team completes Phase 2A Cycle 3</td>
</tr>
<tr>
<td>0830-0900</td>
<td>EA PM/Mentor/Control</td>
<td>Team completes Phase 2A Cycle 4</td>
</tr>
<tr>
<td>0900-1000</td>
<td>Mentor and Support</td>
<td>Presentation Development</td>
</tr>
<tr>
<td>1000-1100</td>
<td>View presentations & note items for reflection material</td>
<td>Teams deliver presentations</td>
</tr>
<tr>
<td>1100-1130</td>
<td>Monitor and support</td>
<td>Phase 2B (Receive & discuss CDR Results)</td>
</tr>
<tr>
<td>1130-1230</td>
<td>Lunch (develop reflection material?)</td>
<td>Lunch</td>
</tr>
<tr>
<td>1230-1315</td>
<td>Monitor and Support</td>
<td>Phase 3/Phase 4/Phase 5 speed through</td>
</tr>
<tr>
<td>1315-1430</td>
<td>Mentoring guidance</td>
<td>Individuals complete Phase 7 - Reflection</td>
</tr>
<tr>
<td>Homework</td>
<td>Review logged results after completion</td>
<td>Individuals replay experience</td>
</tr>
</tbody>
</table>
Pilot System Evaluation

The instructor familiarization, instructor and student pilots:

• generated 140+ action items for EA enhancements,

• proved the need for stability and performance improvements,

• provided feedback affirming the potential of the EA with students in a classroom
Targeted Lessons

• **Problem solving and recovery**
 — Identify weight and drag problems, remediate with TPM targets and allocation changes
 — Identify schedule problem, remediate with additional staff and a small schedule delay
 — Identify software quality problem, remediate with increased software design review frequency

• **Product integration**
 — All sub-systems need to be done at the same time ideally for integration to begin. Adding resources to airframe/propulsion (AP) and command/control (CC) sub-systems brings their schedule more in line with the other sub-system and the systems integrator, who are not having schedule issues.
 — The solution could be improved by not hiring as many AP senior staff and reducing staff for the systems integrator and ground station sub-contractor so that they meet their targets at the three-month delay, instead of the original CDR schedule. This is left as an exercise for the learner and/or instructor.
 — Transferring weight allocation from AP to CC illustrates the relationships between these two sub-systems and how a win-win can be achieved (or at least a win and no-loss).

• **Cutting corners to make short term goals while ignoring long term outcomes**
 — Make decisions early, even though they have negative cost implications initially. This is better than facing the bigger problems later on of schedule delays that make the cost overruns worse.
Lessons Learned: Team 1

“What would we do differently?

• Over correcting the Aerodynamic Drag target
 — The error was made during the 3rd and 4th cycles where another change was made to the drag target from 2.5 to 2.45, attempting to further optimize the range. During the 4th cycle no change was made to the drag target and thus we spent a lot more money on decreasing the drag and increasing the range when it was not necessary. This partially contributed to our cost overrun of 9%.

• Hire more staff early in the project to ensure there won’t be a schedule slip to integration testing”
“Conclusions

• Based on current trends, CDR readiness NOT likely - No progress goals have been met.
• Suspect that Cycle 1 changes were not dramatic enough, in enough areas

What to do differently:

• More dramatic changes to staffing
• Leave weight targets as-is
• Identify changes more directly linked to C2 progress”
Lessons Learned: Team 3

“Lessons Learned

• Shift staffing earlier to improve quality/test

• Reduce FTE from better performing sub-systems

• Pay closer attention to CDR entry criteria”
Lessons Learned: Team 4

“Hindsight is 20/20

- Early software emphasis worked
- Focus on KPP early
- Maintain focus on CDR entrance criteria
- Airframe/Propulsion subsystem CPI suffered because we spent extra resources to maintain range KPP
- Our initial top 3 issues were not the main issues we encountered
- KPP was in good shape
- We got FIRED! Don’t slip CDR!”
Lessons Learned: Team 5

“Lessons Learned

• Ramped up staff quicker
• Taken staff away from Ground Control to save money
• Raised weight limit prematurely
• Focused on drag coefficient earlier”
Learning Results

These examples demonstrate that for two targeted learning outcomes in particular, nearly all of the teams learned the outcomes as they very clearly highlighted them in their presentations as the lessons they had learned. Other learning objectives were also highlighted by the different teams.

• These lessons were learned despite the fact that the learners only fully completed the first two phases of the experience before speeding through the remaining phases in order to see their results.

• Furthermore, the EA was designed to be played multiple times by learners, so these results are indicative of impressive learning gains given the limited implementation of the experience.
Future Work
Program Goals

Program Goal: Transform the education of SE by creating a new paradigm capable of halving the time to mature a senior SE while providing the skills necessary to address emerging system’s challenges.

1. Successfully integrate EA into DAU course SYS30X

2. Create additional EA experiences deployed at multiple sites

3. Create sustaining open source development community
1. Integrate EA into SYS30x

- **EA System Capabilities**
 - Completion and stabilization of multi-learner mode
 - Provide means of informing learner of impact of recommendations
 - Ensure that dialog is synchronized with recommendations
 - Improve learner interface with status charts to eliminate need to page through entire set

- **Tools**
 - Create set of tools that allow the DAU to customize and create new Experiences

- **Deployment Deliverables**
 - Define explicit EA deliverables to support DAU deployment

- **Hosting Requirements**
 - Specify technical details of hosting requirements
Program Goals

2. Create additional EA experiences deployed at multiple sites
 — Develop joint competency to fill out EA experience through the life-cycle
 — Develop 2-3 other experiences for different domains
 — Trial tools through these experience development efforts

3. Create sustaining open source development community
 — Develop tool suite using SERC core funding
 — Release EA technology, tools and experiences to open-source community
 — Create consortia to provide long-term support
EA Tools

<table>
<thead>
<tr>
<th>#</th>
<th>Limitation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Complex simulation models with limited reuse supported</td>
<td>Sim Builder - Simulation model builder utilizing libraries/templates</td>
</tr>
<tr>
<td>2</td>
<td>Complex simulation outputs dependent on hundreds of variables/parameters</td>
<td>Sim Tuner - Parameter tuner that automates the tuning of parameters to yield desired outputs via batch processing of different combinations</td>
</tr>
<tr>
<td>3</td>
<td>Manual nature of phase and cycle development</td>
<td>Phase Editor - GUI-based tool for phase, cycle and event specification with code generation</td>
</tr>
<tr>
<td>4</td>
<td>Manual nature of specifying events and their triggers in the Experience</td>
<td>Event Editor - GUI or text-based tool to specify events and their triggers with code generation</td>
</tr>
<tr>
<td>5</td>
<td>Manual nature of artifact integration involving re-linking and recompilation</td>
<td>Artifact Integrator - Artifact entry application that allows designer to take an artifact file and enter it into EA application with automatic recompilation and re-linking</td>
</tr>
<tr>
<td>6</td>
<td>Manual nature of assessment of learner performance</td>
<td>Learning Assessor - Assessment tool-suite that provides automated performance scoring, decision comparisons against proven baselines, etc.</td>
</tr>
</tbody>
</table>
Funding & Joint Research

• Extended Capabilities
 — DAU: Option Year 3, Pilot + Multi-Learner Technology Support
 — SERC: Content Creation Tools funding

• New Experiences
 — DAU: Logistics Experience, proposal submitted
 — ONR: Team experience, white paper submitted
 — NSF: Learning in Formal and Informal Settings, proposal submitted
 — NRO: Spacecraft experience, will pilot SEEA
 — MITRE: Team experience, discussions
 — LMC: Interest
 — SI Corporation: Proposal interest
 — Sponsored doctoral research: 2 Stevens students
Experience Accelerator
Welcome Jon Wade
Your Experience Awaits You!

Option Menu
(please select choice below):
- UAV Experience
- Multiplayer
- Profile Update
- Logout

UAV Experience Status
- New User Orientation: Complete
- New Experience Orientation: Complete
- Pre-Integration System Development: Active
- System Integration
- System Field Test
- Limited Production and Development
- Experience End
- Reflection

Help
Abort Experience
Join the Experience Accelerator Team!

Contact for information:

Jon Wade
jon.wade@stevens.edu

Bill Watson
brwatson@purdue.edu

Doug Bodner
doug.bodner@gatech.edu

This material is based upon work supported, in whole or in part, by the Defense Acquisition University through the Systems Engineering Research Center (SERC). SERC is a federally funded University Affiliated Research Center (UARC) managed by Stevens Institute of Technology in partnership with University of Southern California.
Thoughts?
Backup Slides
Dialogue Enhancements

Initial dialogues tended to be based on a single thread of actions on the part of the learner, and only varied slightly from cycle to cycle.

Temporality - To maintain the information flow to support the learner, dialogues were developed for each subcycle. This involved tracking the current subcycle status and providing different conversation tree branches based solely on the temporal subcycle. This allowed dialogues to be based on time-critical issues and to adjust if recommendations about delays were made. It also allowed insertion of challenges based on external events (such as unexpected changes to requirements, resources or schedules).

Relevance - The dialogues also needed to better track the information that was provided in the recommendations of the learner and the results they generated in the simulation. To support this, dialogue variables were provided for conditional branching in dialogues. This allowed the dialogue to change based on the recommendations and simulation results. The NPCs can now provide additional information based on the simulation as well as the story line. The dialogues can also now display subject values to the learner during the conversation. While not necessary because of the new dashboard and recommendations interfaces, being able to use values in the conversation adds to its verisimilitude.
Simulation Tools:

- These two tools work interactively to allow the construction, test and tuning of systems dynamic models. Both the Sim Builder and Tuner tools have application outside of the Experience accelerator in the development of system simulation models, particularly those in systems dynamics.

- **Sim Builder** – This tool provides the ability for non-technical staff to build systems dynamics models based on existing templates in a GUI environment.

- **Sim Tuner** – This tune provides the ability to analyze the system, determine the sensitivity of various parameters, and aid in the tuning of the system to achieve desired behaviors.
Simulation Model Support - Future

- **Model Builder**: construct models based on templates

- **Parameter Tuner**: highlight parameters with greatest impact over selected time scales

- **Simulation Master**: ability to run batches of simulations to accelerate tuning and validation of models.
Experience Building Tools:
These three tools are used together with Chatmapper to allow non-technical staff the ability to build and modify EA experiences without any programming. In most cases, this work will be accomplished through a GUI and a single workbench.

- **Phase Editor** – This tool provides the ability to change the finite state machine that changes the phases within an EA experience. For example, the project phases can be customized to new domains and environments and can be constructed to represent state changes that are not affiliated with formal project states.

- **Event Editor** – This tool provides the capability to create and edit events during an experience and the activities that may trigger them. For example, a phone call from the learner’s supervisor can be triggered based on a decision made by the learner or the state of the project.

- **Artifact Integrator** – This tools allows an experience builder the ability to quickly upload an experience change, be it a new artifact such as a new dialog or report, or a changed phase and or event, and test the results without having to do any programming.
GUI Tool – Phase and Event Creator - Future

Learning Cycles

Begin → Learning Cycle 1 → Learning Cycle 2 → Learning Cycle i

Phases

- Ready
- User Select
- Phase 1 Experience Introduction
- Phase 2 Pre-Integration
- Phase 3 Integration
- Phase 4 Field Test
- Phase 5 Deployment
- Phase 6 Experience End
- Phase 7 Reflection
- End

SubPhases

- Major Phase
 - A. Pre-Review
 - B. Post-Review
 - C. Work Completion

SubPhase Cycles

- Cycle 1 → Cycle 2 → Cycle j
Artifact Entry - Future

• Today:
 — Designer saves file in DropBox
 — Designer tells technical staff to load it into the design
 — File is moved to the correct location or hand coded
 — System is recompiled or linked
 — Designer is notified of the change
 — Designer tests changes

• Future:
 — Designer opens artifact entry client
 — Designer saves file into system sandbox
 — Designer tests changes
Tool Descriptions (cont.)

Learning Analysis Tools:
This tool has application outside of the Experience Accelerator and can be used as a tool for learning in a number of experiential environments.

- **Learning Assessor** – This tool will analyze the subject’s activities, decisions, project performance and self-assessments to determine the learning level achieved. This work will involve developing the logging ability to collect the necessary information, and an analysis tool for making the final predictions.
EA Tool Year 1 Development

<table>
<thead>
<tr>
<th>Phase</th>
<th>Simulation Tools</th>
<th>Experience Builder Tools</th>
<th>Learning Analysis Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify</td>
<td>3 months: a review of numerous existing tools will be required</td>
<td>1 month: basic concept already complete, needs to be reviewed by users</td>
<td>5 months: significant work is necessary in evaluating and advancing the state of the art</td>
</tr>
<tr>
<td>Develop</td>
<td>6 months: Complex simulation outputs dependent on hundreds of variables/parameters</td>
<td>8 months:</td>
<td>5+ months: This work will primarily consist of design work with some potential limited implementation. Implementation work will conclude in Phase 2 of this program.</td>
</tr>
<tr>
<td>Evaluate</td>
<td>1 month: Manual nature of phase and cycle development</td>
<td>1 month: The tool will be evaluated iteratively through its development culminating in this final evaluation</td>
<td>1 month: A final report will be written.</td>
</tr>
</tbody>
</table>
EA Tool 3 Year Phasing

<table>
<thead>
<tr>
<th>Time</th>
<th>Simulation Tools</th>
<th>Experience Builder Tools</th>
<th>Learning Analysis Tools</th>
<th>EA Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Develop prototype Sim Builder and Tuner tools</td>
<td>Develop prototype Phase and Event Editor, and Artifact Integrator tools</td>
<td>Research and create high level design of Learning Assessor tool</td>
<td>To be determined by need</td>
</tr>
<tr>
<td>Year 2</td>
<td>Refine Sim Builder and Tuner tools, make available open source. Determine new tools.</td>
<td>Refine Phase and Event Editor, and Artifact Integrator tools, make available open source. Determine new tools.</td>
<td>Develop prototype Learning Assessor tool</td>
<td>Develop plan for EA technology update, e.g., migration from FLASH to HTML5</td>
</tr>
<tr>
<td>Year 3</td>
<td>Develop new tools</td>
<td>Develop new tools</td>
<td>Refine Learning Assessor tool, make available open source</td>
<td>Update EA technology</td>
</tr>
</tbody>
</table>