Systems Engineering Research Efforts Supporting Marine Corps Systems Command

RT 111, RT 112, RT 117

By
Daniel C. Browne and Santiago Balestrini, PhD

6th Annual SERC Sponsor Research Review
December 4, 2014
Georgetown University
School of Continuing Studies
640 Massachusetts Ave NW,
Washington, DC

www.sercuarc.org
RT 111 Virtual Collaborative Environment for Conducting Project Design and Tests
Integration of Simulation Tools with MARCORSYSCOM’s FACT

RT 112 Development and Application of FACT Portfolio Management Capability
Support of the Global Combat Support System – Marine Corps Trade Study

RT 117 Development & Application of FACT to Support USMC Ground Vehicle Analysis
Applying Lessons Learned to Improving FACT for USMC’s Next Major Acquisition
Virtual Collaborative Environment for Conducting Project Design and Tests

By
Daniel C. Browne and Santiago Balestrini, PhD
6th Annual SERC Sponsor Research Review
December 4, 2014
Georgetown University
School of Continuing Studies
640 Massachusetts Ave NW,
Washington, DC

www.sercuarc.org
GTRI has been developing the FACT with Marine Corps Systems Command (MARCORSYSCOM) since 2011 to offer a comprehensive model-based systems engineering toolset for acquisition support.

Naval Air Systems (NAVAIR) has been developing the Architecture Management Integration Environment (AMIE) to provide a Government-owned standard for real-time simulation integration.

Naval Undersea Warfare Center (NUWC) has been developing the Virtual World (VW) to provide a 3D virtual, interactive environment for collaboration, modeling and simulation support, and displaying of virtual test events.

Army Research Lab (ARL) has been developing Executable Architecture Systems Engineering (EASE) for abstracting simulation execution to a web-based interface lowering the bar of entry.
Goals and Objectives

• Integrate USMC’s FACT with a distributed simulation environment
 — The goal is to enhance FACT’s current hosted surrogate, deterministic
 models with higher-fidelity simulation tools used by Government analysts

• Display the events of the distributed real-time simulation in Naval
 Undersea Warfare Center’s (NUWV) Virtual World (VW)

• Close the data loop by feeding the simulation data back into FACT
 to take advantage of the visualization capabilities and allow for
 design iteration on the system of interest.

• Additionally, allow cached results to be displayed inline with
 deterministic fact-running models integrated directly within FACT.
Approach

• SERC with Government sponsor is current reviewing available technologies for integrating with simulation tools.
 — These tools include AMIE and EASE referenced above.

• Work has already been completed by NAVAIR and NUWC to demonstrate the use of VirtualWorld for viewing and replaying simulation executions managed by AMIE

• GTRI and ARL have already developed a link between FACT and EASE by developing a REST API on top of the EASE capability and implementing the API within FACT in order to:
 — Identify the available simulation tools
 — Link the FACT model representation with the EASE simulation inputs and outputs using a web-base authoring capability
 — Execute simulations within EASE using FACT designs and retrieve the results
RT 112: Development and Application of FACT Portfolio Management Capability

Support of the Global Combat Support System – Marine Corps Trade Study

By
Daniel C. Browne and Santiago Balestrini, PhD
6th Annual SERC Sponsor Research Review
December 4, 2014
Georgetown University
School of Continuing Studies
640 Massachusetts Ave NW,
Washington, DC

www.sercuarc.org
Background

- The as-deployed GCSS-MC enterprise system is currently not accessible in all environments in which Marines need access the enterprise system.
 - Specifically, the devices available to Marines in high latency, low bandwidth zones are not providing the capabilities for providing useful access.

- A War Room was chartered to review the stated requirements, determine the requirements coverage by the existing capability, and identify other GOTS or COTS solutions to fill the current capability gaps.
Overview

1. Develop approach for conducting portfolio management in a general sense, informed by the GCSS-MC War Room process, and compare to existing FACT capabilities.

2. Evaluate existing tools and data to enable the approach defined above.

3. Develop and apply methods for incorporating portfolio data and models into a web-based tool and exploring integrating the capability with the existing FACT toolset.
1 Define the Problem and List Alternatives.

2 Develop the Evaluation Framework.

3 Complete the Framework. Populate the data.

4 Test the Framework.
PMAT applies these Model-Based Systems Engineering standards, a browser-based front-end, and open source software to create a framework for portfolio development and analysis.

PMAT separates the portfolio management process into modules; this allows the user and a facilitator to work together to accomplish the following:

- State the problem and define requirements
- Manage data
- Analyze and explore options.
PMAT Data Analysis Capabilities

- Means to aggregate high-dimensional data into 3 dimensions so that it can be visualized and inspected by the SMEs.

- Tool and process for evaluating the trustworthiness of data.

- Requirements stop light comparison including filtering for quick identification of requirements coverage for solutions of interest.
Tool for an SE SME to utilize for walking a team through the effort of defining a high-level problem and decomposing to *good* requirements.

— Captures the process, specifically through versioning text-based artifacts within the tool.

— Offers a *Glossary* for defining terms within the problem context and automatically hyperlinks to the definition for all uses of term throughout the term. Enables consistent use of terms.

— Simple interface for capturing notes and attachments.
PMAT Requirements Definition
Future Improvements

- Inner module for capturing Notes within the context of meetings, rather than solely a project-wide capability for capturing notes.

- Versioning of attachments.

- Comprehensive indexing and search capability.

- Export capability for other tools to ingest the final requirement set.
RT 117: Development & Application of FACT to Support USMC Ground Vehicle Analysis

Applying Lessons Learned to Improving FACT for USMC’s Next Major Acquisition

By
Daniel C. Browne and Santiago Balestrini, PhD
6th Annual SERC Sponsor Research Review
December 4, 2014
Georgetown University
School of Continuing Studies
640 Massachusetts Ave NW,
Washington, DC

www.sercuarc.org
We were able to complete 2 years of work in 9 months.

paraphrased in reference to FACT support of USMC ACV Study

Dr. Norbert Doerr

Technical Director of the NAVSEA SEA 05 Technology Office
• Mar-Dec 2013 – Support ACV Phase II team
 — Analyzed approximately 1M configurations vs dozen configuration in Phase I
 — Developed framework for capturing interdependencies between components and algorithm to assemble feasible vehicles
 — Lessons learned:
 o Discrete optimization is more valuable than continuous
 o Maintenance of databases of instances is tedious, error prone, and labor intensive
 o Projects may require custom interactive visualizations
 o Need to facilitate the workflow of expert users to better adapt to a project’s changing requirements
 o Must standardize the data structures and the interfaces to facilitate spinning up new users and developers

• Incorporate lessons learned and develop new capabilities to better support future USMC ground vehicle analysis teams
ACV Phase II Solution
Generation Process

START

SHUFFLE WBS

RANDOMLY SORTED WBS

SORT OPTIONS BY ASCENDING MASS

YES

RANDOM < P_MIN

NO

SHUFFLE OPTIONS RANDOMLY

SORTED OPTIONS

CHECK NEXT OPTION

CAN OPTION BE SELECTED?

NO

SELECT OPTION

YES

EMPTY WBS ELEMENTS?

YES

END

* and all associated dependencies (e.g., requires, goes with, add if)
Custom Visualization Example
The Networked Workflow

- No one workflow can address all possible projects
- Must support a flexible, customizable workflow, that emphasizes elements as required by each project, and allow users to inject themselves easily as needed
A New Integrated Software Framework

Regular User

Web Applications

Ipython Notebook Client

IP[y]: Notebook Server

Model 1

Model 2

Model n

django

REST framework

django

mongoengine

ODM

RDF Store

mongoDB

openMDAO

Berkeley DB

Regular User

Power User
Monolithic vs Modular

Fact originally was developed as a monolithic application

RT-117 work is refactoring the code, and creating a more modular framework based on functionally decoupled applications.
Define a Car as having two value properties (weight, cost)

Car = Block(name='Car', description='A four wheeled vehicle')
Car.weight = ValueProperty(low='0', units='lbm')
Car.cost = ValueProperty(low='0 USD')

Define a car as containing an engine

Car.Engine = Block()
Car.Engine.description = "The prime mover for a vehicle"
Car.Engine.weight = ValueProperty(low='0 lbm', default='550 lbm')

Define Pinto as an instance of a Car

Pinto = Car(weight=2200, cost=8500)
Model Coordination + Execution
MBSE meets MDAO

- Translate OpenMDAO Components and Assemblies into SysML Constraint Blocks
- Create OpenMDAO Architecture Assemblies based on SysML Parametric Diagrams
- Execute OpenMDAO assemblies and store data
Portions of this material are based upon work supported, in whole or in part, by the United States DoD through the Systems Engineering Research Center (SERC) under Contract HQ0034-13-D-0004. SERC is a federally funded University Affiliated Research Center managed by Stevens Institute of Technology. The views and conclusions are those of the individual authors and participants, and should not be interpreted as necessarily representing official policies, either expressed or implied, of the DoD, any specific US Government agency, or the US Government in general.

Acknowledgements

Michael O’Neal
Director, Modeling & Simulations Division
Systems Engineering, Interoperability, Architecture & Technology (SIAT)
MARCORSYSCOM

Luis E. Velazquez
Deputy Director, Modeling & Simulations Division
Systems Engineering, Interoperability, Architecture & Technology (SIAT)
MARCORSYSCOM
Systems Engineering Research Efforts Supporting
Marine Corps Systems Command

RT 111, RT 112, RT 117

By
Daniel C. Browne and Santiago Balestrini, PhD
6th Annual SERC Sponsor Research Review
December 4, 2014
Georgetown University
School of Continuing Studies
640 Massachusetts Ave NW,
Washington, DC

www.sercuarc.org