SERC 2014-2018 Strategic Technical Plan

Jon Wade
SERC Chief Technology Officer
and
Associate Dean of Research, School of Systems and Enterprises
Stevens Institute of Technology

5th Annual SERC Sponsor Research Review
February 25, 2014
Georgetown University
Hotel and Conference Center
Washington, DC

www.sercuarc.org
SERC 2014-2018 Technical Plan

• Provide the vehicle to align the SERC Vision and Research Strategy with the Sponsor’s Core funding priorities

• Describe the SERC Vision, the Sponsor’s needs, and the SERC’s response to these needs

• State DoD’s SE research grand challenges and how the SERC will apply core and other funding during 2014-2018 to address them

• Provide a multi-year roadmap of research programs to support this strategy.
SE and Management Transformation: Affordability and Value in Systems

Summary: Create, validate, and transition MPTs to make better decisions on affordability and value in systems, particularly for non-functional requirements or -ilities.

Status:
- Tradespace and affordability analysis foundations
 - More precise ility definitions and relationships
 - Stakeholder value-based, means-ends relationships
 - ility strategy effects, synergies, conflicts
 - U. Virginia, MIT, USC
- Next-generation system cost-schedule estimation models
 - Initially for full-coverage space systems (COSATMO)
 - Extendable to other domains
 - USC, AFIT, GaTech, NPS
- Applied iTAP methods, processes, and tools (MPTs)
 - For concurrent cyber-physical-human systems
 - Experimental MPT piloting, evolution, improvement
 - Wayne State, AFIT, GaTech, NPS, Penn State, USC

Impact:
- Engagements with NAVSEA, Army RDECOM on ility tradespace analysis in set-based design, use of GaTech FACT tradespace analysis capability
- Engagements with USAF/SMC, Aerospace Corp., and aerospace companies on definition and development of next-generation, full-coverage space system cost estimation model
- Development and iteration with DoD, industry of initial framework and quantification of ility definitions, stakeholder value-based, means-ends relationships, and ility strategy synergies and conflicts with other ilities
Human Capital Development: Engineering Capstone Registry

Summary: Building and piloting the infrastructure to affordably scale capstone projects nationwide between 2014 and 2018 and improve how thousands of students are taught engineering across the US.

Status:
- Created registry website
- Matched schools and sponsors on 3 projects in pilot year
- Solicited 24 project proposals from sponsors in 2014-2014 academic year
- Identified successful capstone practices

Impact:
- Create robust infrastructure to support large-scale involvement of universities, students and organizations
- Integration of systems engineering into engineering curricula

Stakeholders propose challenging projects
 - Require systems thinking across multiple disciplines

Students volunteer to participate
 - Select their own projects
 - Teams are self-organizing

Faculty provide guidance and academic assessment
 - Advise stakeholders on expectations
 - Advise students on plans and methods
 - Assign grades to students

Pilot 2012-2013 Academic Year
- **Humanitarian assistance and disaster recovery kit and Dual use ferry**
 - Stevens Institute of Technology, University of Alabama in Huntsville
- **Satellite radiometer**
 - Southern Methodist University, University of Hawaii at Manoa
- **Immersive training system**
 - Missouri University of Science and Technology, University of Hawaii at Manoa
The *Networked* National Resource to further systems research and its impact on issues of national and global significance

The systems research and impact network