Annual SERC Research Review – RT 19

November 9-10, 2010
Hosts: University of Maryland Fraunhofer Center College Park, MD

www.SERCuarc.org
RT19: Research on Building Education & Workforce Capacity in Systems Engineering

Dr. Laura Adolfie
Director, STEM Development Office
DDR&E/Research Directorate

Elisabeth McGrath
Senior Research Associate
Executive Director, Center for Innovation in Engineering & Science Education (CIESE)
Stevens Institute of Technology
Building Education & Workforce Capacity in Systems Engineering

Research Question
What methods, approaches, environments, and materials lead to greater SE learning, career interest, and interest in DoD problems?

Approach
Develop course materials and other value-added SE inputs and conduct pilot courses in 14 diverse institutions; assess impacts on SE learning, career interest and interest in DoD problems among undergraduate and graduate students.
Context for Research

• Pilot programs within UG/G capstone courses, to provide students with *substantive practical experience with SE concepts and skills, and with opportunities for the development of a final product*.

• Capstone course work will focus on *authentic DoD problems, with participation from DoD representatives in teams’ projects*
Deliverables

• Analysis of learning outcomes by principal investigators of individual pilot programs based on progress as of January 2011 and June 2011.

• Compilation, synthesis and analysis of learning outcomes from the pilot programs for project periods through January 2011 and June 2011.

• Recommendations based on the pilot programs that will inform the development of a larger scale-up effort to build capacity for SE learning nationwide.
The Value of Systems Engineering Capstone Courses

Dr. Laura Adolfie
Director, STEM Development Office
DDR&E/ Research Directorate

2nd Annual SERC Research Review
November 9, 2010
Systems Engineering Mission

- Develop and grow the Systems Engineering capability of the Department of Defense

- A robust Systems Engineering capability across the Department requires attention to Policy, People, and Practice

- We apply best engineering practices to:
 - Support and advocate for DoD Component initiatives
 - Help program managers identify and mitigate risks
 - Shape technical planning and management
 - Provide technical insight to OSD stakeholders
 - Identify systemic issues for resolution above the program level
Focus Areas for DDR&E: Improving the Department’s Engineering Practice

- Growing the Systems Engineering Workforce
- Improving SE Capabilities in DoD and the Defense Industrial Base
- Growing our Nation’s Future SE Workforce

Our Focus: Policy, People and Practice
What Are Our Expectations of Our Systems Engineering Workforce?

- Breadth
- Depth
- Leadership
We Need Systems Thinkers with Real World Context

- Today’s technology systems are extremely complex, cross-disciplinary, somewhat non-deterministic, and rarely standalone.

- We give student opportunities to have an authentic DoD experience:
 - Work on real DoD projects
 - Interact with DoD and Defense Industry mentors

21st Century Skills

- Systems thinking
- Adapability
- Self-management / Self-development
- Complex communication / social skills
- Nonroutine problem solving

Service Academy Participation

- Air Force Institute of Technology and Naval Postgraduate School manage:
 - US Air Force Academy
 - US Military Academy
 - US Naval Academy
 - US Coast Guard Academy

- Allows separate but aligned efforts with the 8 civilian SERC schools

- Targets future engineering officers in the Services
Sponsor Goals for the Program

- Expose graduating undergraduate/early Masters students to DoD SE topics
- Test innovative ways to insert DoD content into curricula
- Increase numbers of SEs who can enter DoD workforce quickly
 - DoD Laboratory Enterprise
 - DoD Acquisition Programs & Offices
 - Defense Contractors
Methodology

- Operate Pilot at 8 civilian universities & 6 service academies/military graduate institutions
- SE Capstone course design
 - 1st semester lecture/seminar course
 - 2nd semester project
- Project Teams select from 4 project areas
 - Immersive Training
 - Low Cost Computing
 - Expeditionary Green Housing
 - Expeditionary Operations
- Project Teams work with mentors
 - DoD
 - Defense Primes
- SERC to collect and report “Lessons Learned”
- Program Deliverables
 - Syllabi
 - Progress Reports
 - Project Outcomes/Papers & Outbriefs
 - “Lessons Learned” with recommendations for paths forward
SE Capstone Student Projects

- Project descriptions available for review at:

Sponsor Focus

- Provide Access & Opportunities that Build Student Interest
- Provide Mentors from Government & Defense Industry for all Teams
 - Foster Long-Term Relationships
 - Build Community of Interest & Practice
- Track and Assess Quality/Quantity of Mentor Involvement
Systems Engineering: Critical to DoD Success

Innovation, Speed, and Agility

http://www.dod.mil/ddre/stem
Project Schedule

Phase I: Start Up
- 2.5 Months
- March 1 – May 15, 2010

Phase II: Pilot Implementation
- 13.5 Months
- May 15 – June 30, 2011

Phase III: Analysis
- 3 Months
- July 1 – Sept. 30, 2011

- Letter of intent 3.15.10
- Select Team 5.15.10
- Proposals Due 5.1.10
- RFP Released 4.1.10
- Develop Project Description
- Courses Start
- Pilots Submit Interim Reports
- Workshop
- Final Report to Sponsor
- Pilots Submit Final Reports
- Final Report to Sponsor

11/1/2010
Partners

<table>
<thead>
<tr>
<th>Civilian Universities</th>
<th>Service Academies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Auburn University</td>
<td>1. Air Force Institute of Technology</td>
</tr>
<tr>
<td>2. Missouri University S & T</td>
<td>2. Naval Postgraduate School</td>
</tr>
<tr>
<td>3. Penn State</td>
<td>3. Air Force Academy</td>
</tr>
<tr>
<td>4. Southern Methodist University</td>
<td>4. Military Academy – West Point</td>
</tr>
<tr>
<td>5. Stevens Institute of Technology</td>
<td>5. Coast Guard Academy</td>
</tr>
<tr>
<td>6. University of Maryland</td>
<td>6. Naval Academy</td>
</tr>
<tr>
<td>7. University of Virginia</td>
<td></td>
</tr>
<tr>
<td>8. Wayne State</td>
<td></td>
</tr>
</tbody>
</table>
What we hope to learn

• Common elements across diverse set of projects that lead to increased SE knowledge, career interest, and interest in DoD problems.

• Differing effects and outcomes between civilian and military institutions, undergraduate and graduate students, other differentiators.

• Differential effects of DoD mentor involvement (preliminary).

• Differential impacts and lessons learned from varied approaches to recruitment, course organization, team composition, etc.

• Recommendations for core elements of success for scaling up
Measurement of Student Educational Outcomes

Required Common Assessments

- Pre/Post Survey
 - Knowledge of SE
 - Interest in SE Careers
 - Awareness of DoD problem areas
- Pre/Post Case Student Analysis (Bradley Fighting Vehicle)
 - Growth in SE approach/Analysis (semantic analysis)
- Weekly Blog Posts
 - Qualitative
 - Progress in level of sophistication of student analysis
 - Final blog post-cumulative
Measurement of Student Educational Outcomes

Customized Assessments

- Faculty-developed assessments unique to their courses
- PI Evaluation of course effectiveness
- PI Reports on DoD and Industry Mentors
Preliminary Data

- Student Recruitment
- Problem Area Selection
- Teams
- Role of Graduate Students
- DoD Mentor Impact
- Early Lessons
Most Schools Made the DoD Project a Choice for Students Doing Capstone Projects

- Why did students choose to participate?
 - Students interested in specific problem area
 - Students interested in working on a project sponsored by the DoD

NOTE: 13 Partner institutions provided feedback on this preliminary PI.
Problem Areas and Teams

- **Problem Area Selection Criteria:**
 - Faculty members with expertise in a particular area were available and interested
 - Problem area considered to be related to a social concern and would attract students
 - Partner institutions had ongoing project in that area

- **Teams:**
 - Wide range in the number of teams at each partner institution – from 1 to 10, with an average of four
 - Team size range – 2 to 24 students; most teams formed by 5 students
Involvement of Graduate Students

• Undergraduates benefit from graduate students’ experience

• Serve as role models and provide guidance to undergraduates

• “We also included distance education graduate students in our course. This is valuable in that it requires the team to coordinate their work in advance, communicate effectively, and use virtual collaboration tools”
DoD Mentors’ Impact to Date

On a scale of 1 to 5, with 1 being “completely disagree” and 5 being “completely agree,” how much do you agree or disagree that having a DoD mentor has had a significant impact on...

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Motivation</td>
<td>0</td>
<td>0</td>
<td>17%</td>
<td>17%</td>
<td>67%</td>
</tr>
<tr>
<td>Student Learning</td>
<td>0</td>
<td>0</td>
<td>33%</td>
<td>50%</td>
<td>17%</td>
</tr>
</tbody>
</table>
DoD Mentors’ Impact to Date

On a scale of 1 to 5, with 1 being “completely disagree” and 5 being “completely agree,” how much do you agree or disagree that having a DoD mentor has had a significant impact on...

<table>
<thead>
<tr>
<th>Degree of Involvement</th>
<th>Number of Schools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very involved</td>
<td>2</td>
</tr>
<tr>
<td>Somewhat involved</td>
<td>5</td>
</tr>
<tr>
<td>We have a mentor, but we have not worked with him/her yet</td>
<td>2</td>
</tr>
<tr>
<td>We do not have a mentor yet</td>
<td>4</td>
</tr>
</tbody>
</table>

NOTE: Timeline for coursework implementation varies from one school to another.
DoD Mentors Impact to Date Described by PIs

- “He was able to go over conceptual design review for each team and answered many questions from students”

- “Having the students interact with the sponsors on a weekly basis helps keep them focused on the tasks. It also gives students experience in dealing with project reporting”

- “Provides realistic views on the system, its functionality and requirements. Provides feedback and critique”
PI Suggestions to Improve the Mentor Role in the Future

- “The role of the mentor should be clarified. In some cases the DoD mentor serves as a primary stakeholder but in other cases the mentor serves as an advisor guiding students to a solution. Blurring these two roles can lead to a confusion”

- “It should be clear to mentors that the primary objective is to provide high quality learning experience for the students, not to develop a design that will prove to be useful”

- “We should have had an assigned mentor as we were submitting the proposal to guide us in how we went from initial concept up through marketing to students and product research and development”
Lessons Learned

- Need for more planning time:
 - To review project definitions and clarify the roles of the mentors and faculty
 - Earlier allocation of DoD mentors
 - Aligning schedules and academic requirements across departments has been a challenge due to the scope and multi-disciplinary nature of the project. A project manager would be helpful

- Better planning for IRB approval:
 - Recommendation for a joint protocol and informed consent process

- Suggestions for current pilot program:
 - Organized visits to outside facilities, either on-site or electronic/virtual
 - Students meeting with mentors outside the gates of their institution
Next Steps

- January 2011 Interim Report with preliminary findings and internal course evaluations
- June 2011 Final Reports and July 2011 Workshop
- Analysis and Synthesis of Learning Outcomes from the Pilot Programs
- Recommendations based on the Pilot Programs that will inform the development of a scale-up effort to build SE capacity
- Establish mechanism to monitor student/mentor/faculty relationships