Criticality of SQ Tradeoffs

- **SQs have systemwide impact**
 - System elements generally just have local impact
- **SQs often exhibit asymptotic behavior**
 - Watch out for the knee of the curve
- **Best architecture is a discontinuous function of SQ level**
 - "Build it quickly, tune or fix it later" highly risky
 - Large system response time example: 1-character change in 2000-page spec:
 - 4 seconds: cost $30 million; 1 second: cost $100 million

Software Ownership Cost vs. Reliability

- **Relative Cost to Develop, Maintain, Own and Operate**
- **COCOMO II RELY Rating**

SysML Building Blocks for Cost Modeling

- Implemented reusable SysML building blocks [Peak]
 - Based on SoS/COSYSMO SE cost (effort) modeling work by Lane, Valerdi, Boehm, et al.
- Successfully applied building blocks to healthcare SoS case study from [Lane 2009]
- Provides key step towards affordability trade studies combining architecture and cost driver tradeoffs

Piloting MMPTs with TARDEC, NAVSEA

- **Extended Set-Based Design**
 - Infrastructure reserves capacity keeps options open & costs down for future upgrades & defers limiting decisions
 - Potential future configurations and capabilities are enabled or excluded by design decisions
 - Focus on the achievable region of capability space given design decisions rather than regions of "configuration space"
- **Adversarial Risk Analysis**
 - Adversaries adapt by choosing battlefields, tactics and equipment that avoid our systems' strengths and exploit their limitations
 - Adversaries can be more nimble than the MDAP process
 - Adversaries learn from each other, potential adversaries learn from past adversaries
 - Technology Maturation Risks and Opportunities
 - Robust solutions can exploit opportunities, but are effective without them
 - Near-optimal over a range of maturity, cost & capability scenarios

MIT SQs Ontology: 14-D Semantic Basis

At ESD Level...
- **Major Combat Operations**
- **and System Level**
 - **Perform BDA**

Supporting Better Buying Power Objectives

- **Affordability**: Strengthen and expand "should cost"
 - Developing next-generation life-cycle cost models
- **Use of incentive-type contracts**: "formulic incentives"
 - Strengthening formulas; linking them to SysML models
- **Increase the use of performance-based logistics (PBL)**
 - Extending RT-18 Total Ownership Cost models
 - Strengthening software performance-based logistics
- **Use Modular Open Systems Architecture for Innovation**
 - Working with TARDEC and NAVSEA on set-based design
- **Provide clear "best value of performance" definitions for industry**
 - Working with industry on cost-performance trades via INCOSE, NDIA
- **Improve our leaders’ ability to understand and mitigate risk**
 - Fully integrated via RT-107 Quantitative Risk PI Gary Witus

Contacts:
David.Jacques@afit.edu, Tommer.Ender@gtri.gatech.edu, Valerie.Sitterle@gtri.gatech.edu, Russell.Peak@gatech.edu, (Donna Rhodes) Rhodes@mit.edu, Adam.Ross@mit.edu, (Ray Madachy) rmadach@nps.edu, (Mike Yukish) may106@arl.psu.edu, (Barry Boehm) boehm@usc.edu, (JoAnn Lane) joanne@usc.edu, (Jim Alstad) jclastad@usc.edu, (Gary Witus) ae75445@wayne.edu, (Walt Bryzik) bryzikad9079@wayne.edu