Application of Portfolio Management Techniques to Software-Heavy Systems of Systems

RT-147 building on RT-112

By
Daniel C. Browne and Todd B. Shayler

7th Annual SERC Sponsor Research Review
December 3, 2014
FHI360 Conference Center
1825 Connecticut Ave, NW
Washington, DC  20009-5721

www.sercuarc.org
OVERVIEW

1. RT-112: FACT Portfolio Management Capability
2. Portfolio Management Analysis Tool
3. RT-147: Application of Portfolio Management Techniques to Software-Heavy Systems of Systems
RT-112: FACT Portfolio Management Capability
In 2014, SERC supported Marine Corps Systems Command (MARCORSYSCOM) in review of the Global Combat Support System – Marine Corps (GCSS-MC) via RT-112. In that task, GTRI:

1. Developed an evaluation framework utilizing portfolio management strategies to support the War Room in evaluation of portfolio alternatives to solve the GCSS-MC challenge.

2. Defined a plan for a Portfolio Management Analysis Tool with comprehensive capabilities for (1) capturing and iterating on a problem statement and defining requirements, (2) managing data, (3) analyzing data and exploring portfolio alternatives.

3. Began development of the PMAT completing a portion of the planned modules.
• Framework for portfolio development and analysis
  — Model-Based Systems Engineering standards
  — Browser-based front-end
  — Web hosted
  — Open source software

• User and facilitator work together

• Process separated into modules
  — State the problem and define requirements
  — Manage data
  — Analyze and explore options
• The Requirements module develops
  — Problem statement
  — High-level capabilities
  — Well-defined requirements

• Track history of drafts and revisions
• Make notes
• Refer to external documents
• Add important terms to a glossary
• Assign responsibilities
• Prioritize requirements according to a user-defined scale (e.g. blocker, critical, major, minor, trivial)
## PMAT: Well-Defined Requirements

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unitary (Cohesive)</td>
<td>The requirement addresses one and only one thing.</td>
</tr>
<tr>
<td>Complete</td>
<td>The requirement is fully stated in one place with no missing information.</td>
</tr>
<tr>
<td>Consistent</td>
<td>The requirement does not contradict any other requirements and is fully consistent with all authoritative external documentation.</td>
</tr>
<tr>
<td>Non-Conjugated (Atomic)</td>
<td>The requirement does not contain conjunctions.</td>
</tr>
<tr>
<td>Traceable</td>
<td>The requirement meets all or part of a business need as stated by stakeholders and authoritatively documented.</td>
</tr>
<tr>
<td>Current</td>
<td>The requirement has not been made obsolete by the passage of time.</td>
</tr>
<tr>
<td>Unambiguous</td>
<td>The requirement is concisely stated and expresses objective facts, not subjective opinions.</td>
</tr>
<tr>
<td>Specify Importance</td>
<td>The requirement must specify a level of performance.</td>
</tr>
<tr>
<td>Verifiable</td>
<td>The implementation of the requirement can be determined through basic possible methods: inspection, demonstration, test (instrumental) or analysis (to include validated modeling and simulation).</td>
</tr>
</tbody>
</table>
1. Create new project and assign it to a user group

Create New Project

Name: GCSS-MC

Provide a short description name for the project.

Team: GCSS-MC

You may first need to setup a Group in the Admin interface.

Submit  Cancel
PMAT: REQUIREMENTS

GCSS-MC

Add notes and attachments

General Notes

Attachments

Name: GCSS-MC

Team: GCSS-MC
  • Danny Browne

This project will support the Global Combat Support System - Marine Corps in determine the technologies needed to support the warfighter.

— Danny @ Nov. 7, 2014, 1:42 p.m.
PMAT: REQUIREMENTS

Importance Scale

Define your importance scale which will be used to weight your requirements.

<table>
<thead>
<tr>
<th>Value</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>Must Have</td>
<td>This is an absolute must have. If the provided system cannot achieve a requirement with this importance, than the system does not provide sufficient value added.</td>
</tr>
<tr>
<td>5.0</td>
<td>Nice to Have</td>
<td>A requirement with this importance is highly desirable, but a system which does not meet it may still have value added.</td>
</tr>
<tr>
<td>3.0</td>
<td>Desirable</td>
<td>Like &quot;Nice to Have&quot;, but not worth as much in the value added sense.</td>
</tr>
<tr>
<td>1.0</td>
<td>Pie in the Sky</td>
<td>Would be really nice, but not at all necessary.</td>
</tr>
</tbody>
</table>
Global Combat Support System Marine Corps provides the means for Marines to request supplies. This system, however, is not available in areas with poor comms. The system needs to be improved to be more robust in poor comms areas.

— danny @ Nov. 7, 2014, 2:02 p.m.

Glossary terms appear as hyperlinks in the story.

PMAT: REQUIREMENTS

Add a term to the glossary
The glossary ensures the team is utilizing the same vocabulary.
PMAT: REQUIREMENTS

Add Child Requirement

GCSS-1-1-1: GCSS-MC must be available in all areas.

Add Child Requirement

GCSS-1-1-2: Here is another one.

GCSS-1-2-1: GCSS must operate on limited bandwidth, high latency connections.

Unitary
Consistent
Traceable
Unambiguous
Complete
Non-conjugated
Current
Verifiable
External Data

- Incorporate external data into the analysis
  - GCSS-MC Requirements Traceability Matrix
  - Option metrics data
  - Oracle database reports

- Automatically parse files with custom formats

- Focus on data quality instead of simple transformation
Data Exploration

- Option metrics data is 4-dimensional
  - Solution Option
  - Metric
  - Bandwidth Demand
  - Network Latency

- Inspect 2-dimensional slices
- Works for any multidimensional data set

<table>
<thead>
<tr>
<th>ITEM 1</th>
<th>METRIC 1</th>
<th>METRIC 2</th>
<th>METRIC 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM 1</td>
<td>0.00</td>
<td>0.00</td>
<td>MISSING VALUES</td>
</tr>
<tr>
<td>ITEM 2</td>
<td></td>
<td></td>
<td>ARE RED</td>
</tr>
<tr>
<td>ITEM 3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.50</td>
</tr>
</tbody>
</table>

SELECT A SLICE OF THE DATA

DIMENSION 1: 3
DIMENSION 2: 4
Data Confidence

- Some data (e.g. vendor surveys) are not necessarily trustworthy
- Is this vendor exaggerating the response to this question?

1. How trustworthy is each vendor?
2. How specific (unambiguous) is each question?

\[
\begin{bmatrix}
  r_{1,1} & \cdots & r_{1,n} \\
  \vdots & \ddots & \vdots \\
  r_{m,1} & \cdots & r_{m,n}
\end{bmatrix}
= 
\begin{bmatrix}
  v_1 \\
  \vdots \\
  v_m
\end{bmatrix}
\times
\begin{bmatrix}
  q_1 & \cdots & q_n
\end{bmatrix}
\]

- Matrix of Response Confidence
- Vector of Vendor Trust
- Vector of Question Specificity
Display Requirement Coverage

<table>
<thead>
<tr>
<th>Group01</th>
<th>Group02</th>
<th>Group03</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00%</td>
<td>75.00%</td>
<td>90.10%</td>
</tr>
</tbody>
</table>

Overall portfolio scores:

**SUMMARIZE REQUIREMENT COVERAGE**

**HIDE COLUMNS**

**FILTER THE TABLE**

<table>
<thead>
<tr>
<th>Group01</th>
<th>Group02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item01</td>
<td>Item02</td>
</tr>
<tr>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

**HIDE ROWS**
Calculate the Requirement Coverage

<table>
<thead>
<tr>
<th>Icon</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Green Icon" /></td>
<td>2.00</td>
<td>The objective value of the requirement is achieved.</td>
</tr>
<tr>
<td><img src="image" alt="Yellow Icon" /></td>
<td>1.00</td>
<td>The threshold value of the requirement is achieved.</td>
</tr>
<tr>
<td><img src="image" alt="Red Icon" /></td>
<td>0.00</td>
<td>The requirement is not met.</td>
</tr>
<tr>
<td>N/A</td>
<td>0</td>
<td>The requirement does not apply.</td>
</tr>
<tr>
<td>UNK</td>
<td>0</td>
<td>The status of the requirement is unknown.</td>
</tr>
</tbody>
</table>

\[
\text{Portfolio Value} = \max_{\text{Components}} \{ \text{Component Value} \}
\]

\[
\text{Portfolio Score (\%)} = \frac{\sum_{\text{Requirements}} \text{Portfolio Value}}{2 \times \text{Number of Requirements}} \times 100
\]
• Survey Builder
  — Convert well-defined requirements into a market survey
  — Visualize survey responses

• Integration Risk Assessment
  — Measure the risk inherent in combining a set of systems into a portfolio

• Metrics Analysis
  — Calculate a portfolio score using the metrics for each system

• Document Library
  — Store, share, and version reference material

• Data Citation
  — Associate data with its authoritative source
RT-147: Application of Portfolio Management Techniques to Software-Heavy Systems of Systems
After the work completed in review of GCSS-MC, another team has been chartered to conduct a review of the entire USMC Log IT Portfolio. The overarching goal of the effort is to identify the full set of basic functions required across the Log IT Portfolio, and develop alternative sets of software portfolios which reduces the number of unique systems required while offering equivalent or superior capability as the existing portfolio.
Three specific research directions have been identified to support the USMC LogIT Portfolio Review.

**ONE**  System of Software Systems Evaluation Methodologies

**TWO**  Functional Decomposition and Requirements Capture Tool

**THREE**  Functional Coverage and Evaluation Comparison Visualizations
Build upon the work from RT-112 to develop new modeling approaches and methodologies that scale from one software system to a system of software systems.

Additionally, develop evaluation and scoring methods specifically geared towards software systems like those within the Log IT portfolio. Software attributes that will be considered as inputs to these evaluation methods will include:

- source lines of code (sloc)
- open systems architecture
- code quality
- modularity
- legacy
Design framework for capturing functional decomposition of Log IT portfolio, including parameter characterization and mapping of system attributes to function evaluation.

Proper execution of this task will ease the transition from functional decomposition to portfolio re-aggregation and evaluation.
Design and implement data visualization techniques to offer insightful visualizations to decision makers. Visualizations will be required for inspecting the functional decomposition as well as the scoring methodology for the portfolio re-aggregation. Preferred implementation of these visualizations is within the same tool supporting the functional decomposition and data gathering.
Example visualizations developed under RT-117 for FACT 2.0.

Treemap showing requirements coverage.

Layered bar chart for comparing two candidate solutions.
An interactive chord diagram offers a means to depict connections between alternatives from different categories.

If there are dependencies between alternatives from different categories, a chord diagram offers a means for an analyst to quickly identify invalid solution sets.
Example visualizations developed under early FACT work

This interactive coordinated scatterplot with bar chart offered a means to identify the impacts of a specific alternative on the overall design, or vice-versa, identify alternatives that offered specific overall system cost or performance.
Portions of this material are based upon work supported, in whole or in part, by the United States DoD through the Systems Engineering Research Center (SERC) under Contract HQ0034-13-D-0004. SERC is a federally funded University Affiliated Research Center managed by Stevens Institute of Technology. The views and conclusions are those of the individual authors and participants, and should not be interpreted as necessarily representing official policies, either expressed or implied, of the DoD, any specific US Government agency, or the US Government in general.
Application of Portfolio Management Techniques to Software-Heavy Systems of Systems

RT 147

By
Daniel C. Browne and Todd B. Shayler
7th Annual SERC Sponsor Research Research Review
December 3, 2014
Georgetown University
School of Continuing Studies
640 Massachusetts Ave NW,
Washington, DC

www.sercuarc.org