Systems Engineering
Experience Accelerator – RT16

Hypothesis: By using technology we can create a simulation that will put the learner in an experiential, emotional state and effectively compress time and greatly accelerate the learning of a systems engineer faster than would occur naturally on the job.

Workforce Demographics

Experience Accelerator Goals
To build insights and "wisdom" and hone decision making skills by:
- Creating a "safe", but realistic environment for decision making
- Exposing the participants to the "right" scenarios and problems
- Providing rapid feedback by accelerating time and experiencing the downstream consequences of the decisions made

Transforming SE Development
- We postulate that the new paradigm must be:
 - Integrated: Provides an integration point of multi-disciplinary skills and a wide range of Systems Engineering knowledge in a setting that recreates the essential characteristics of the practicing environment.
- Experience Based: Providing accelerated learning opportunities through experience-based interactive sessions.
- Agile: Allowing for quality, timely development of course material that is most appropriate for the target students.
- Time/Cost Efficient: Compressing multi-year lifecycle experiences into a much shorter period of time.

Emphasis on Open System Architecture

Experience Accelerator Team
- Experience Design:
 - Alice Squires – Stevens
 - Rick Abel – consultant
 - John Griffin – consultant
 - John McKeown – consultant
- Evaluation:
 - Bill Watson, CoP – Purdue
 - Petra Dominick – Stevens
 - Dick Rally – Stevens
 - Dana Ruggiero – Purdue
- Technology & Tools:
 - Jon Wade, PI – Stevens
 - George Kamberov – Stevens
 - Brent Cps – Stevens
 - Vinny Simonetti – Stevens
 - Raji Mungan – Purdue
- Simulation:
 - Doug Bodner – Georgia Tech
 - Pradeep Jasahar – Georgia Tech

Framework and Applications

Prototype Feedback Loop

Challenge: Needs and Wants
- Poten-al Phase 2 work
- UAV KPMs:
 - Cost
 - Quality
 - Schedule
- Benefits:
 1. Increased ability to leverage existing abilities
 2. Ability to technology as it evolves
 3. Reduced development time and overall cost

Multi-Threaded Java Server Architecture

Future Work
- Capabilities:
 - Expand first-year prototype with additional capabilities
 - Expand set of challenges and landmines
 - Include cost objectives
 - Enhance user profile and competencies addressed
 - Enhance simulated world features and character interaction
 - Add features to user develop
- Development Productivity
 - Improve content creation and development tools
 - Dialog authoring
 - Artifact creation
 - Event descriptions and triggering
 - Make Open Source Ready
 - Documentation
 - Source control and defect tracking
 - Port to open development environment
- Evaluate Learning Efficacy
 - User Feedback
 - Develop more detailed feedback linked to competency model
 - Outcomes assessment
 - Establish outcomes assessment plan
 - User reactions
 - Behavior change / performance improvement measures

Contact for more information:
- Jon Wade, Jon.Wade@stevens.edu
- Bill Watson, billwatson@purdue.edu
- Doug Bodner, doug.bodner@georgia tech.edu